SimVP-- Simpler yet Better Video Prediction

论文地址:arxiv

摘要

作者认为,现有的CNN,RNN,Transformer 之类的视频预测领域的模型都过于复杂了,作者想要找到一个简单的方式,同时可以达到与之相当的效果。

作者提出了 SimVP,这是一个简单的视频预测模型,完全基于 CNN 构建,通过均方误差(MSE)损失函数以端到端的方式进行训练。在不引入任何额外技巧与复杂策略的情况下,就可以实现最先进的性能。

正文

深度视频预测模型当前主要有 4 类,如图所示:

分别是:

  1. RNN-RNN-RNN
  2. CNN-RNN-CNN
  3. CNN-ViT-CNN
  4. CNN-CNN-CNN

在纯 CNN 基础模型方面,要提高准确度,通常要使用各种技术,但是作者探索出了一个简单模型的新高度。

问题描述

给定一个在时间 $t$ 的包含过去 $T$ 帧的视频序列 $X_{t,T}={x_{i}}^t_{t-T+1}$,而目标是在时间 $t$ 预测未来的序列 $Y_{t,T’} = {x_{i}}^{t+T’}t$。该序列包含接下来的 $T’$ 帧,其中 $x{i}$ 是一个具有通道数 $C$,高度 $H$ 和宽度 $W$ 的图像。形式上,预测模型是一个映射 $F_\Theta:X_{t,T}->Y_{t,T’}$,其中的可学习参数 $\Theta$ 通过以下公式优化:

$$
\Theta ^* = \arg \min {\Theta } \mathcal {L}(\mathcal {F}{\Theta }(\boldsymbol {X}{t, T}), \boldsymbol {Y}{t, T’})
$$
$L$ 可以是各种损失函数。

模型架构

SimVP 由一个编码器,一个翻译器,一个解码器组成。

  • 编码器用于提取空间特征
  • 翻译器学习时间演变
  • 解码器则整合时间信息以预测未来帧

编码器

编码器堆叠了 $N_s$ 个 ConvNormReLU 块(Conv2d+LayerNorm+LeakyReLU)来提取空间特征,即在 (H,W)上进行 C 通道的卷积。隐藏特征表示为:

$$
z_{i} = \sigma (\mathrm {LayerNorm} (\mathrm {Conv2d}(z_{i-1}))), 1 \leq i \leq N_s
$$

其中输入 $z_{i-1}$ ​和输出 $z_i$ 的形状分别为 $(T, C, H, W)$ 和 $(T, C, \hat{H}, \hat{W})$。

翻译器

翻译器使用 $N_t$ 个 Inception 模块来学习时间演变,即在 $(H, W)$ 上进行 $T*C$ 通道的卷积。

Inception 模块由一个 1*1 大小的 Conv2d 后接并行的 GroupConv2d 操作符完成。隐藏特征表示为:
$$
z_{j} = \mathrm {Inception}( z_{j-1} ), N_s < j \leq N_s+N_t
$$
其中输入 $z_{j-1}$ 和输出 $z_j$ 的形状分别为 $(TC, H, W)$ 和 $(\hat{T}\hat{C}, H, W)$。

解码器

解码器使用 $N_s$ 个 unConvNormReLU 块(ConvTranspose2d+GroupNorm+LeakyReLU)来重建真实帧,在(H, W)上进行 C 通道的卷积。隐藏特征表示为

$$
z_{k} = \sigma (\mathrm {GroupNorm} (\mathrm {unConv2d}(z_{k-1}))),\ N_s+N_t < k \leq 2N_s + N_t
$$

其中,输入 $z_{k-1}$ 与输出 $z_k$ 的形状分别为 $(T,\hat{C},\hat{H}, \hat{W})$ 与 $(T,C,H,W)$。使用 ConvTransposed2d 作为 unConv2d 操作符。

模型评估

使用均方误差(MSE)、平均绝对误差(MAE)、结构相似性指数(SSIM)和峰值信噪比(PSNR)来评估预测质量。

在五个数据集上进行实验,从而来进行评估,如下所示:

性能评估

可以看到,SimVP、PhyDNet和CrevNet显著优于先前的方法,MSE降低达到42%。然而,SimVP比PhyDNet和CrevNet简单得多,没有使用RNN、LSTM或复杂模块。

训练时间

由上可知,SimVP 的训练过程比其他方法快得多,所以 SimVP 可以更容易地使用与扩展。

翻译器的使用

使用 RNN 和 Transformer 替换了 CNN ,再进行测试。使用了不同模型中的翻译器来,测试后得到以下结果:

可以得出结论:

  1. CNN和RNN在有限的计算成本下实现了最先进的性能。
  2. 如果模型容量足够,RNN在长期内收敛速度更快。
  3. CNN训练更稳健,在大学习率下不会剧烈波动。
  4. 在类似的资源消耗下,Transformer在我们的SimVP框架中没有优势。

评判能否到 SOTA 水平

SimVP可以在轻量级其次上达到 SOTA 结果。此外,与 PhyDNet 相比,SimVP 的训练时间更短。

可以看到在不同的数据集上有良好的泛化能力。

可以看到,SimVP 在灵活预测长度的情况下扩展良好。SimVP 达到了最新的性能。

消融实验

哪个架构的设计对于性能有关键的作用?

由上图 1-4 可知:空间UNet、时间UNet、分组卷积和分组归一化都能带来性能提升,其重要性排序为:分组卷积 > 分组归一化 ≈ 空间UNet ≈ 时间UNet。

卷积核对性能的影响

由上图 5-8 可知,随着核大小的增加,可以看到显著的性能提升。通过将模型 8 的隐藏维度加倍构建于模型 9,这种提高可以进一步增强。

编码器,转换器,解码器的角色

  • 转换器主要关注预测物体的位置和内容。
  • 解码器负责优化前景物体的形状。
  • 编码器可以通过空间UNet连接消除背景误差。